Diketahuiα dan β adalah akar-akar persamaan kuadrat dari x² - (a + 4)x + 16 = 0. Jika 2α dan 2β adalah akar-akar persamaan kuadrat dari x² - 16 + 64 = 0, maka nilai a adalah. . A. 4 B. 2 C. 0 D. -2 E. -4. Jawab : Persamaan x² - (a + 4) + 16 = 0, dengan akar-akarnya α dan β : α + β = -(-(a + 4)/1 α + β = (a + 4)
BerandaJika a dan b akar-akar persamaan kuadrat x 2 − a...PertanyaanJika dan akar-akar persamaan kuadrat dan maka ...FFF. Freelancer9Master TeacherPembahasanIngat konsep jumlah dan hasil kali akar dari Diketahui maka diperoleh . sehingga jika dan akar-akar persamaan kuadrat maka Karena sehingga diperoleh Karena maka Jadi .Ingat konsep jumlah dan hasil kali akar dari Diketahui maka diperoleh . sehingga jika dan akar-akar persamaan kuadrat maka Karena sehingga diperoleh Karena maka Jadi . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!3rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Persamaankuadrat dengan variabel x dinyatakan dalam bentuk umum sebagai berikut : $$\mathrm{ax^{2}+bx+c=0}$$ dengan a, b, c bilangan real dan a ≠ 0 Penyelesaian dari suatu persamaan kuadrat disebut akar-akar persamaan kuadrat, yaitu nilai-nilai x yang memenuhi persamaan kuadrat tersebut atau dengan kata lain, nilai-nilai x yang menyebabkan Jakarta - Saat duduk di bangku Sekolah Menengah Atas SMA detikers pasti akan menemui pembelajaran persamaan kuadrat dalam matematika. Seperti apa contoh soal persamaan kuadrat?Persamaan kuadrat merupakan persamaan dalam matematika yang memiliki variabel paling tinggi berderajat dua. Persamaan kuadrat juga memiliki jenis-jenis yang dibedakan dari dari buku 'Bahas Total Kumpulan Soal Super Lengkap Matematika SMA; oleh Supadi, berikut ini penjelasan mengenai persamaan kuadrat, lengkap dengan contoh soal persamaan kuadrat dan Umum Persamaan KuadratPersamaan kuadrat adalah persamaan yang variabel tertingginya berderajat dua. Bentuk umum persamaan kuadrat adalahax² + bx + c = 0, dengan a, b, c, € R dan a ≠ 0Keterangan- x adalah variabel- a adalah koefisien dari x²- b adalah koefisien dan x- c adalah konstantaCara Menyelesaikan Persamaan KuadratUntuk menyelesaikan sebuah contoh soal persamaan kuadrat, detikers harus memahami tiga cara menyelesaikan persamaan kuadrat ax + bx+c= 0, yaitu1. memfaktorkan2. melengkapkan kuadrat, dan3. menggunakan rumus kuadrat rumus abc, yaituContoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootdenganD = b² - 4ac D = diskriminanJenis Akar-Akar Persamaan KuadratSebelum menyelesaikan contoh persamaan kuadrat, diperlukan untuk mengetahui persamaan kuadrat ax² + bx + c = 0, dengan akar-akar x1 dan x2 yang sangat bergantung pada nilai diskriminan D.- D ≥ 0 → persamaan kuadrat mempunyai dua akar nyata real- D > 0 → persamaan kuadrat mempunyai dua buah akar nyata dan berbeda- D = 0 → persamaan kuadrat mempunyai dua buah akar nyata yang sama kembar- D 1⁄2d. m > 1⁄2 atau m - 1⁄2PembahasanPerhatikan konsep berikut kuadrat ax² + bx + c = 0 → akar-akar nyata dan berlainan jika D > + 2m - 1x - 2m = 0 → a = 1; b = 2m - 1, dan c = -2m. Memiliki akar-akar nyata dan berlainan berbeda, maka berlakuD > 02m -1² 4 . 1 . -2m > 04m² - 4m + 1 +8m > 04m² + 4m + 1 > 02m + 1² = 0Jadi, himpunan penyelesaian pertidaksamaan tersebut adalah m - 1⁄2. Jawaban E2 Akar-akar persamaan kuadrat ax² - 3ax + 5a-3 = 0 adalah x1 dan x2. Jikax13 dan x23 = 117, maka a² + a sama dengan...a. 4b. 3c. 2d. 1e. 0Pembahasanax² - 3ax + 5 a - 3 = 0 → a = a; b = -3a; c = 5a - 15maka diperolehContoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootSubstitusi persamaan 1 dan ii ke persamaan berikut.x13 dan x23 = 117Contoh Soal Persamaan Kuadrat dan Jawaban Materinya Foto ScreenshootDari hasil tersebut, makaa² + a = 1² + 1= 2Jawaban contoh soal persamaan kuadrat beserta pembahasannya. Selamat belajar detikers! Simak Video "Kata IDI Soal Pemanggilan Dokter Tanpa Gelar " [GambasVideo 20detik] pay/pay SifatAkar. Jika x 1 dan x 2 adalah akar-akar persamaan kuadrat ax 2 + bx + c = 0 dengan D>0, maka berlaku: Rumus menentukan jumlah dan hasil akar-akar persamaan kuadrat. Jumlah Kuadrat x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2(x 1.x 2) Selisih Kuadrat x 1 2 - x 2 2 = (x 1 + x 2) (x 1 - x 2) Kuadrat Selisih (x 1 - x 2) 2 = (x 1 + x 2) 2 - 4x Hai, Sobat Zenius. Kali ini, gue mau bahas tentang rumus persamaan kuadrat lengkap dengan contoh soal dan penggunaan akar-akarnya. Materi Matematika kelas 9 ini, akan sering elo temui dan akan menjadi dasar dari materi-materi lainnya di tingkat SMA. Yuk, belajar bareng untuk memahami persamaan kuadrat. Pengertian Persamaan KuadratBentuk atau Rumus Persamaan KuadratPemfaktoranKuadrat SempurnaContoh Soal Persamaan Kuadrat dan Pembahasannya Pengertian Persamaan Kuadrat Persamaan kuadrat adalah persamaan yang berorde dua atau pangkat tertingginya dua. Penerapan persamaan kuadrat dalam kehidupan sehari-hari dapat ditemukan dalam berbagai aspek yang membentuk parabola, kurva, atau lengkungan. Nah, bentuk tersebut merupakan salah satu bentuk grafik persamaan kuadrat. Contohnya dapat ditemukan pada bentuk pelangi atau pada saat olahraga seperti anak panah yang dilepaskan, dan masih banyak lainnya. Bentuk atau Rumus Persamaan Kuadrat Keterangan a ≠ 0 a, b, dan c = bilangan real a, b, dan c = konstanta x = variabel Pemfaktoran Pemfaktoran merupakan cara untuk menemukan akar-akar persamaan kuadrat. Ada berbagai macam cara untuk menemukan akar-akar persamaan kuadrat, contoh persamaan kuadrat pada tabel berikut. Persamaan Kuarmus Perhatikan bentuk atau model dari persamaan kuadrat yang berada pada kolom model. Kemudian, dari bentuk atau model itu, Sobat Zenius bisa menggunakan cara pemfaktoran di kolom sebelahnya. Lalu, Sobat Zenius perlu untuk mengingat ketentuan yang ada sesuai pada kolom. Dengan begitu, dapat dipastikan jika akar-akar dari bentuk atau model tertentu akan seperti pada yang tertera di kolom. Kuadrat Sempurna Persamaan kuadrat tidak selalu dapat diselesaikan dengan cara pemfaktoran. Terdapat cara selain pemfaktoran untuk menyelesaikan persamaan kuadrat, yaitu dengan cara melengkapi kuadrat sempurna. Dari cara melengkapi kuadrat sempurna, dihasilkan bilangan rasional dengan rumus sebagai berikut. atau Ada baiknya kalau kita langsung coba bahas soal biar cepat paham, guys. Yuk, kita latihan! Ada baiknya kalau kita langsung coba bahas soal biar cepat paham, Sobat Zenius. Yuk, kita latihan! Contoh Soal Persamaan Kuadrat dan Pembahasannya Soal 1 Tentukan persamaan kuadrat yang akar-akarnya sebagai berikut ! Jawab x – 5 x + 5 = 0 x = 5 atau x = -5 Jadi, himpunan penyelesaian dari persamaan kuadrat di atas adalah {5, -5} Soal 2 Tentukan nilai x dari persamaan kuadrat ! Jawab x – 2 x – 3 = 0 x – 2 = 0 atau x – 3 = 0 x = 2 atau x = 3 Jadi nilai x dari persamaan kuadrat di atas adalah 2 atau 3. Soal 3 Dari persamaan kuadrat , himpunan penyelesaiannya menggunakan kuadrat sempurna adalah … Jawab x = 1 + 3 = 4 atau x = -1 + 3 = 2 Jadi, himpunan penyelesaian dari persamaan kuadrat di atas adalah {4, 2} Sampai sini, Gue yakin banget elo sudah paham dengan apa yang sudah kita bahas. Jika masih belum, Sobat Zenius bisa banget nonton video-video yang ada di web dan YouTube Zenius. Oiya, untuk memantapkan materi ini, elo juga perlu sering berlatih soal ya, Sobat Zenius! Elo bisa pelajari berbagai materi pelajaran yang sudah Zenius sediakan dengan cara mengklik gambar di bawah ini. Kalo elo mau cari materi yang lainnya, tinggal ketik topik yang elo mau di kolom pencarian, ya. Atau kalau mau belajar materi Matematika yang lain, langsung aja klik gambar di bawah ini. Sampai jumpa, Sobat Zenius! Biar makin mantap, Zenius punya beberapa paket belajar yang bisa lo pilih sesuai kebutuhan lo. Di sini lo nggak cuman mereview materi aja, tetapi juga ada latihan soal untuk mengukur pemahaman lo. Yuk langsung aja klik banner di bawah ini! Baca Juga Artikel Lainnya Rumus Tabung Rumus Kerucut Kumpulan Rumus Matematika Originally published September 4, 2021Updated by Arieni Mayesha Bentukumum fungsi kuadrat adalah y = ax2 + bx + c, dengan x adalah variable, a adalah koefisien x kuadrat, b adalah koefisien x, dan c adalah konstanta dan a ≠ 0. Pada umumnya grafik kuadrat berbentuk parabola. Secara umum dalam menentukan titik puncak fungsi kuadrat (Parabola) dirumuskan seperti berikut. Xpuncak = -b / (2a) Untuk persamaan kuadrat y = ax^2 + bx + c yang memiliki akar-akar persamaan p dan q, kita memiliki rumus : p + q = -b / a p . q = c / a Sekarang kita bahas soal di Mencari Akar-akar persamaan Kuadrat – Jika sobat punya persamaan kuadrat maka penyelesaian persamaa tersebut adalah dengan mencari akar-akar persamaan kuadrat nya. Berikut ini cara mencari akar persamaan kuadrat. 1. Mencari akar persamaan kuadrat dengan pemfaktoran Namanya pemfaktoran, jadi intinya mencari faktor nilai x. Mencari akar persamaan kuadrat dengan faktor berarti kita berpikir flash back. Untuk medapatkan akar persamaan kuadrat kita berpikir dari mana asal suatu persamaan kuadrat? contoh sederhananya Persamaan Kuadrat x2 + 8x – 9 maka faktornya adalah x+9 x-1 sama kaya sobat ditanya DimSum itu terbuat dari apa? Atau Es Cream ini terbuat dari apa? Ini lebih susah daripada ketika sobat diminta mencari hasil dari x+9 x-1 pasti akan mudah mendapatkan hasil x2 + 9x -x – 9 –> x2 + 8x – 9 Berikut ini cara mudah mencari akar persamaan kuadrat dengan pemfaktoran Contoh Soal 1 sederhana carilah akar persamaan kuadrat dari x2-6x+5= 0 Cari 2 bilangan yang ditambahkan = b dan dikalikan = Cari nilai 1×5 = 5 Cari Faktor dari 5 yang bisa menghasilkan angka -6–> -5 dan -1 Tulis Ulang Persamaan Menjadi x2-6x+5 = 0 x2-5x-x+5 = 0 xx-5-x+5 = 0 xx-5-x-5 = 0 x-1 x-5 = 0 –> selesai Sebenarnya untuk soal sederhana itu mencari akar persamaan kuadratnya cukup di awang-awang bisa. Namun untuk soal yang lebih susah, cara di atas akan sangat membantu. Mari simak contoh soal 2 Contoh Soal 2 medium carilah akar persamaan kuadrat dari 2x2-25x+63 = 0 —> bisa di awang-awang tapi aga susah Cari 2 bilangan yang ditambahkan = b dan dikalikan = Cari nilai 2×63 = 126 Cari Faktor dari 126 yang bisa menghasilkan angka -25 faktor 126 1,2,3,7, 9, 18, 63 –> -7 dan -18 7 dan 18 untuk penentuan ini sobat harus sering-latihan, saran ” carilah faktor yang tengah-tengah tidak terlalu kecil ex1,2,3 dan tidak terlalu besar.” Tulis Ulang Persamaan Menjadi 2x2-25x+63 = 0 2x2-18x-7x+63 = 0 2xx-9-7x-9 = 0 pakai aturan asosiasi, semoga paham 2x-7 x-9 = 0 selesai mudah bukan 😀 Contoh mencari akar persamaan kuadarat dengan bentuk berbeda 4x2 – 5x = 0 4xx-5 = 0 4x = 0 atau x-5 = 0 —> x = 0 atau x = 5 x2 – 4 = 0 –> jika ada a2–b2 bisa diubah mejadi a-b a+b x-√4 x+√4 = 0 —> x =2 atau x = -2 x2 – 16 = 0 x-√16 x+√16 = 0 x-4 x+4 = 0 -4 dan 4 ada 2 nilai x untuk akar persamaan kuadrat tersebut Biar lebih lancar silahkan dicoba mencari akar persamaan kuadrat dari soal-soal berikut ini x 2 + 4x –12 = 0 x 2 – 10 x = – 21 x 2 + 7 x + 12 = 0 3 x 2 – x – 2 = 0 x 2 + 8 x = –15 2. Mencari Akar Persamaan Kuadrat dengan Rumus ABC rumus kecap Dalam beberapa soal sobat, akar persamaan kuadrat kadang ada yang tidak bisa dicari akar persamaan kuadratnya dengan melalui pemfaktoran seperti x2+ 8 x +9 = 0 Jadi? Soalnya bonus dong?. Hahaha ngga. Masih ada cara lain untuk mencari akar persamaan kuadratnya, yaitu pakai rumus ABC sebagai berikut rumus ABC tanda ± menandakan ada 2 kemungkinan akar persamaan kuadratnya x1 = -b ± √[b2 – 4ac] / 2a x2 = -b ± √[b2 – 4ac] / 2a Contoh Soal x2– 8x +9 = 0 x = -b ± √[b2 – 4ac] / 2a x = 8 ± √[64 – 419] / 21 = 8 ± √[64 -36] / 2 = 4 ± √28 / 2 = 4 ± 2√7 / 2 = 2 ± √7 x1 = 2 + √7 x1 = 2 – √7 3. Mencari Akar Persamaan Kuadrat dengan Melengkapkan Kuadrat Sempurna Cara ini cukup sederhana, kita hanya perlu melakukan sedikit manipulasi untuk menemukan akar persamaan kuadrat dari suatu persamaan. Contoh di nomor 2 coba kita cari akar persamaan kuadratnya dengan cara ini x2+ 8 x +9 = 0 x 2 + 8 x +9 + 7= 0 + 7 masing-masing ruas ditambah 7 x 2 + 8 x + 16 = 7 x+4 2 = 7 ruas kiri dijadikan bentuk kuadrat x+4 = ± √7 jadi x = 4 + √7 atau x = 4 – √7 Tidak terlalu sudah kan. Kalau sobat paham prinsip mencari akar persamaan kuadrat dan sering latihan soal persamaan kuadrat pasti InsyaAlloh bisa. Ok, semoga bermanfaat. Semangat Belajarnya.. 😀 Reader Interactions
Jikaa dan b akar-akar persamaan kuadrat x2−(a+3)x+c=0 dan b2=a+10 maka c2+c=
Matematika. Sumber UnsplashSaat pelajaran matematika di sekolah menengah mungkin kamu pernah diajarkan mengenai akar persamaan kuadrat. Persamaan ini sering digunakan dalam ilmu perhitungan di bidang dasarnya, persamaan kuadrat merupakan bentuk persamaan yang variabelnya memiliki pangkat tertinggi sama dengan dua. Berdasarkan buku berjudul Matematika Kelas X yang ditulis Bornok Sinaga dkk., umumnya persamaan kuadrat dalam x adalah suatu persamaan yang berbentuk a, b, dan c bilangan riil dan a ≠ adalah variabel atau peubaha adalah koefisien dari x2b adalah koefisien dari xc adalah konstanta persamaanSementara, ciri-ciri persamaan kuadrat di antaranyaPangkat tertinggi peubahnya adalah 2 dan pangkat terendah adalah 0Koefisien variabelnya adalah bilangan riilKoefisien variabel berpangkat 2, tidak sama dengan nolKoefisien variabel berpangkat 1 dan 0 dapat bernilai 0Mengutip dari Jurnal Matematics Paedagogic Volume 2 Nomor 2 yang ditulis Indah Purnama Putri dkk., dalam menyelesaikan persamaan kuadrat dapat dilakukan dengan tiga cara tersebut antara lain pemfaktoran, membentuk kuadrat sempurna, dan rumus kuadrat rumus ABC. Berikut penjelasan Penyelesaian Akar Persamaan KuadratMenyadur dari buku yang ditulis Bornok Sinaga dkk., ketiga aturan tersebut memiliki kelebihan dan kekurangan. Salah satunya terkait dengan efisiensi waktu yang digunakan untuk menentukan akar-akar sebuah persamaan kuadrat. Tiga cara dalam penyelesaian akar persamaan kuadrat secara lengkap antara lain sebagai berikut akar-akar persamaan kuadrat 3z2 + 2z – 85 = 0 dengan cara pemfaktoran!3z2 + 2z – 85 = 1/3 9z2 + 6z - 255 = 01/3 9z2 + 317 - 15z + 17  -15 = 01/3 9z2 + 51z - 45z + 255 = 01/3 3z + 173z - 153z + 17 = 03z + 173z – 15 = 0 atau 3z + 17z – 5 = 0Harga-harga z yang memenuhi adalah z = -17/3 atau z = 5. Sehingga himpunan penyelesaian persamaan 3z2 + 2z - 85 = 0 adalah Hp = {-17/3, 5}.2. Cara Melengkapkan Kuadrat SempurnaMisalnya terdapat bentuk umum persamaan kuadrat ax2 + bx + c = 0, dengan a, b, c adalah bilangan real dan a ≠ 0. Untuk a = 1, berikut Matematika Kelas X/Bornok Sinaga terdapat bentuk umum persamaan kuadrat ax2 + bx + c = 0, dengan a, b, c adalah bilangan real dan a ≠ Matematika Kelas X/Bornok Sinaga dkk. Berdasarkanakar-akar persamaan kuadrat a x 2 + b x + c = 0 , persamaan kuadrat memiliki akar-akar maksimal sebanyak dua yaitu x 1 dan x 2 . Adapun jenis-jenis akar persamaan kuadratnya : (i). Jika D ≥ 0, maka kedua akarnya nyata (real) (ii). Jika D > 0, maka kedua akarnya nyata (real) dan berbeda (iii). . 346 42 307 24 265 107 80 418

jika a dan b adalah akar akar persamaan kuadrat